Porphyromonas gingivalis 바이오필름에 의한 숙주 면역반응의 교란

전우석·김성주·최정일

부산대학교 치과대학 치주과학과

I. 서론

세균성 바이오필름은 향균물질이나 탐식세포에 저장할 수 있게 하는 단단한산으로 표면구조를 이루고 있고, 하부에 순환성 영양물질, 대사성 물질, 산소 등이 대류하고 있다.1) 치주질환은 일차적으로 복합적인 바이오필름 덩어리로 구성된 혼합된 세균성 공동응집체에 의해 시작된다.2) 복합성 바이오필름을 구성하는 치주균종 중에서 Porphyromonas gingivalis (P. gingivalis)는 과거성 치주질환을 야기하는 주요 병원균이다.3) 그러나 P. gingivalis에 관한 내부분의 미생물학적, 면역학적 연구는 plankton식 배양법에 의해 순식시간 세균에 대해서 주로 행해져 왔다.4) P. gingivalis 바이오필름에 대한 연구는 성장특성과 항미생물체 저항성에 관하여 극히 제한적인 소수의 연구만이 수행되어 왔다.5)

P. gingivalis 바이오필름이 이용하는 독성기전과 생존전략에 대한 보다 광범위한 이해를 위하여 세균유전체, 단백질, 면역학적 측면에 대한 연구가 수행되어야 할 것이다. P. gingivalis 바이오필름에 있어 다르게 발생되는 유전자 또는 단백질을 동정하기 위한 연구가 필요하다고 고려할 때, 이 분야에 있어서 집중된 연구의 필요성이 대두되며, P. gingivalis 바이오필름이 숙주반응을 최과하고 숙주반응을 교란하는 기전을 밝히는 것은 항미생물체 저항성을 이해하고 나아가 효과적인 화학요법제를 고안하는데 있어 강력한 잠재적 가치를 가진 것이다. 또한, 단일세균뿐 아니라 혼합된 세균성 바이오필름 상대로 배양된 P. gingivalis에 관한 숙주면역반응의 특성을 규명하는 것이 치은간의 복합적인 미생물 바이오필름 내에 존재하는 P. gingivalis 바이오필름의 독특한 행동기전을 이해하는데 있어서 가치 있는 정보를 제공할 것이다.

Fusobacterium nucleatum(F. nucleatum)은 치주질환에 있어 핵심적인 병원균 중의 하나이며, 치은염부위에서 미생물의 상호작용과 혼합성바이오필름 형성에 중심적인 역할을 한다. F. nucleatum은 또한 독성에 있어서, P. gingivalis와 상호작용하고, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans)를 면역학적으로 변조시킨다.6) 그러한 기전이 명백하게 규명된 것은 없었지만, 최근에 주사 plankton식 배양으로 증식시킨 F. nucleatum은 먼저 면역이력이아서 P. gingivalis로 면역하였을 때 F. nucleatum이 면역활성의 항 P. gingivalis 항체가능과 숙주의 P. gingivalis에 대한 세포성 또는 체액성 면역반응을 변조시킨다는
점이 시사되었다.

현재까지, 구강미생물 바이오필름에 대한 수두반응은 광범위하게 연구되지는 않았다. 바이오필름유형으로 바이오필름의 특성을 다르게 구현하는 지름, 폭, 높이, 불연성, 생체적 부착성 등의 특성을 평가하는 것은 홍미로운 일일 것이다.

본 연구는 동물에 면역시험 P. gingivalis 바이오필름에 어떻게 세포형, 세포성 면역반응이 교란되는 지를 평가하기 위해 수행하였다.

II. 연구재료 및 방법

1. P. gingivalis 바이오필름의 배양·단일성 또는 복합성

P. gingivalis 381 (Dr. Schifferle 제공, SUNY at Buffalo, Buffalo, NY)과 F. nucleatum ATCC 10953 (American Type Culture Collection, Marassus, VA)을 각각 hemin(5μg/ml)과 menadion(0.5 μg/ml)가 첨가된 tryptic soy broth(Difco, MI)에 혼합하여 배양기에 넣어서 37도에 배양시켰다. 발세성환한 P. gingivalis 세균을 polystyrene이나 mixed cellulose esters로 coating된 3종류의 서로 다른 고체형 조직 배양 plate (cell culture dish, 6-well culture plate, membrane filter)에 접종하여 단일 바이오필름을 형성을 시켰다 (pure P. gingivalis), 6-well plate를 이용하여 P. gingivalis와 F. nucleatum의 혼합성 바이오필름 배양을 유도하였다 (mixed P. gingivalis+F. nucleatum), plankton식으로 배양한 P. gingivalis와 F. nucleatum을 각각 대조군으로 삼았다.

2. 단일 또는 혼합된 P. gingivalis biofilm에 의한 쥐의 면역

의도적 10마리의 Balb/c 쥐의 각각 1x10⁶ cells의 세균세포를 면역 시켰다. plankton식으로 배양한 P. gingivalis 381로 면역한 군은 1군 (P.g-planktonic group), 바이오필름으로 배양한 순수 P. gingivalis 381로 면역한 군은 2군 (pure Pg-biofilm group), 바이오필름유형 혼합배양한 P. gingivalis 381+F. nucleatum 10953으로 면역한 군은 3군 (mixed Pg+F.n-biofilm group), plankton식으로 배양한 F. nucleatum 10953으로 면역한 군은 4군 (F.n-planktonic group)으로 하였다. 세균세포의 구조에 변형된 방법에 따라 미러 환원된 1/2 강도의 증가액으로 3회 세척하였다.

마우스 맥락 내에 피해를 1주 간격으로 3번 주사하여 면역시험. 10마리의 BALB/c 쥐는 phosphate-buffer saline(PBS)로 면역시켜 음성 대조군(negative control group)으로 삼았다.

3. 항 P. gingivalis 항체 역기의 측정

면역혈청을 채득하기 위해 cardiac puncture로 말초혈액을 채취하였다. enzyme-linked immunosorbent assay(ELISA)방법으로 항 P. gingivalis IgG 항체 역기치 결정하기 위해 microtiter plate를 P. gingivalis 세균세포로 coating하고 4°C에서 하루 밤 동안 배양하였다. 0.05% Tween 20을 함유한 PBS(PBS/Tween)로 plate를 3회 세척한 후 PBS/Tween으로 일련의 회석한 쥐의 혈청을 첨가하고 실온에서 2시간 동안 배양하였다. 이후 PBS/Tween으로 plate를 3회 세척하고 100 μl의 peroxidase-conjugated rabbit anti-mouse IgG (H+L)(Jackson ImmunoResearch Laboratories, West, Grove, PA)를 첨가해서 실온에서 2시간 동안 배양하였다. PBS/Tween으로 plate를 3회 세척한 후 100μl의 tetrathemylbenzidine(Kierkegaard and Perry Laboratories, Gaithersburg, MD)을 첨가하여 실온에서 15분 간 배양한 후 반응을 중지시키기 위해 0.18M의 H₂SO₄를 첨가하였다. 과장 450 nm에서의 흡광도(optical density)와 혈청항체요소의 상호관계를 회귀 분석하였다. 대조군 혈청취의 하나를 ELISA unit 100으로 설정하고, 다른 대조군과 실험군의 혈청 IgG 역기를 회귀분석을 이용하여 산출하였다. 각 군간의 혈청수준을 통계적으로 비교하여 analysis of variance(ANOVA)를 시행하였다.
4. P. gingivalis-특이성 T-세포 line의 확립

최종 면역 7일 후 이전에 보고된 방법에 따르면 모든 그룹의 쥐의 비강을 분리하여 T 인과구 enrichment column(R & D Systems, Minneapolis, MN)을 이용하여 T세포를 분리 정제하였다. 정제된 T세포는 1x10⁶개의 P. gingivalis와 더하여 배양하였다. 면역하지 않은 쥐의 비강세포를 Mitomycin C로 처리하여 항원전달세포(antigen presenting cell)로 첨가하였다. 2주간 배양 후 T세포를 세척하고 항원전달세포나 세균항원을 첨가하지 않고 1주간 휴지기를 가졌다. 휴지기 후 이전에 설명된 방법에 따라 T세포 증식을 유도하기 위하여 항원전달세포와 세균항원을 첨가하여 P. gingivalis-특이성 T-세포 line을 확립하였다. 배양 상용액(culture supernatants)을 체취하여 사이토카인 분석을 위해 -20℃에 보관하였다.

5. T-세포 line의 표현형 특성화

T-세포 line을 FITC-conjugated hamster antimouse 또는 T-cell receptor(TCR) monoclonal antibody(PharMingen, San Diego, CA)와 FITC-conjugated rabbit antimouse CD4 또는 CD8 monoclonal antibody(PharMingen, San Diego, CA)로 염색하였다. 각 T-세포 line의 표현형 발현은 flow cytometry(Coulter Epics Elite XL, Cytometry, Coulter, Hialeah, FL)를 이용하여 검사하였다.

6. 사이토카인 농도의 결정

Mitomycin C로 처리된 항원전달세포(1x10⁷ cells/well)와 P. gingivalis(1x10⁶ cells/well)과 더하여 각 line의 T-세포(5x10⁶ cells/well)를 72시간 배양한 후 배양 상용액을 체취하여 이전에 설명된 방법에 따라 ELISA에 의해 사이토카인 수준을 결정하였다. 요약하면, 96-well plate(Corning, Corning, WY)를 4°C에서 하루 밤 동안 sodium carbonate buffer에 희석시킨 rat anti-mouse INF-γ IL-4, IL-10(PharMingen, San Diego, CA)으로 각각 coating하였다. PBS/Tween으로 3회 세척한 후 well은 실온에서 30분간 PBS+10% fetal bovine serum(PBS/FBS)으로 blocking한 다음 PBS/Tween으로 다시 3회 세척하였다. PBS/FBS+0.05% Tween20으로 희석된 각 표본과 standard recombinant mouse INF-γ IL-4, IL-10이 각각 첨가되었다. 실험에서 3시간 동안 배양 후 plate을 PBS/Tween으로 3회 세척하고 biotinylated rat anti-mouse INF-γ IL-4, IL-10를 각각 첨가하여 실험에서 1시간 동안 배양하였다. plate를 PBS/Tween으로 4회 세척한 후 hydroperoxidase-conjugated streptavidin을 첨가해서 37°C에서 30분간 배양하였다. PBS/Tween으로 plate를 8회 세척한 후 o-phenylenediamine(1 mg/ml in 0.1M citrate buffer, pH 4.5)를 첨가하고 실온에서 20분간 배양하였다. 발색반응을 중지하기 위하여 4 N H₂SO₄를 첨가하였고, 400 nm의 파장에서 흡광도를 측정하였다. 표준 사이토카인의 흡광도는 최소요소에 대하여 plotting한 후 각 표본의 사이토카인 농도를 결정하였다. 각 군간의 사이토카인 농도를 통계적으로 비교하기 위하여 analysis of variance(ANOVA)를 시행하였다.

7. 항체 결합성(Avidity)의 측정

P. gingivalis에 대한 상대적인 항체 결합성(avidity)을 측정하기 위하여 이전에 설명된 방법에 따라 microtiter plate를 P. gingivalis로 coating하고 이어서 쥐의 면역 혈청을 두 번 희석하여 적용한다. 혈청 37°C에서 1시간 동안 배양한 후 plate를 PBS/Tween으로 세척하였다. 분리된 류류수에 연속배양의 농도(0.5 M)로 희석된 NH₄SCN을 첨가하여 37°C에서 30분간 배양한 후, 같은 방법으로 NH₄SCN을 반복 적용하였다. plate를 세척하고 결합된 항체에 100 μl의 HRP-conjugated rabbit anti-mouse IgG (Zymed, San Francisco, CA) 첨가하였다. tetramethylbenzidine (Kierkegaard & Perry Laboratories, Gaithersburg, MD)을 첨가하여 발색반응을 유도하였다. 결합지수(avidity index)는 결합된 항체의 50%를 추출하기 위하여 선형화 되는 NH₄SCN의 몫 농도로서 계측되었다.
Table 1. Anti-*P. gingivalis* IgG titer of immune sera obtained from each group (mean ± s.d.), avidity index and opsonophagocytosis index

<table>
<thead>
<tr>
<th>Group</th>
<th>IgG titer</th>
<th>Avidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pg-planktonic group (N=10)</td>
<td>400.5±83.6</td>
<td>4.0±0.1</td>
</tr>
<tr>
<td>pure Pg-biofilm group (N=10)</td>
<td>403.2±91.4</td>
<td>2.9±0.0</td>
</tr>
<tr>
<td>mixed Pg+Fn biofilm group (N=10)</td>
<td>414.5±88.9</td>
<td>2.6±0.0</td>
</tr>
<tr>
<td>Fn-planktonic group (N=10)</td>
<td>409.5±13.0</td>
<td>2.8±0.1</td>
</tr>
<tr>
<td>Control group (N=10)</td>
<td>100.4±8.9</td>
<td>0.9±0.1</td>
</tr>
</tbody>
</table>

Figure 1. Diagrammatic representation of mean opsonophagocytosis titer of immune sera obtained from each group that was expressed as chemiluminescence intensity (Y-axis) according to reaction time (X-axis).

III. 연구 성적

1. 항*P. gingivalis* 항체 역가

각 군으로부터 얻어진 면역 항체의 항*P. gingivalis* 항체 역가는 각각 1군(Pg-planktonic group)에서는 400.5±83.6, 2군(pure Pg-biofilm group)에서는 403.2±91.4, 3군(mixed Pg+Fn biofilm group)에서는 414.5±88.9, 4군(Fn-planktonic group)에서는 409.5±13.0이었고 PBS로 면역시킨 음성 대조군에서는 100.4±8.9이었으며, 각 군 간 유의성 있는 차이는 없었다(Table 1).

2. 항체 결합력(avidity)

*P. gingivalis*에 대한 avidity 결과는 표 1에서 보여주
Table 2. Cytokine concentrations of culture supernatants from P. gingivalis-specific T cell lines established from each group (mean ± s.d.)

<table>
<thead>
<tr>
<th>Group</th>
<th>INF-γ</th>
<th>IL-4</th>
<th>IL-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pg-planktonic group</td>
<td>0.29±0.03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pure Pg-biofilm group</td>
<td>0.15±0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mixed Pg+F.n biofilm group</td>
<td>0.12±0.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fn-planktonic group</td>
<td>0.11±0.10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*cytokine concentration(ng/ml)

![Flow cytometric analysis of P. gingivalis-specific T cell lines](image)

Figure 2. Flow cytometric analysis of P. gingivalis-specific T cell lines

4. T-세포 line의 표현형 특성

P. gingivalis-특이성 T-세포 line의 표현형을 Flow cytometry를 이용하여 검사한 결과 1군(Pg-planktonic group)에서는 helper T-세포(CD4) 비율이 52.2%, cytotoxic T-세포(CD8)비율이 20.5% 있고, 2군(Pg-biofilm group)에서는 CD4가 49.0%, CD8가 30.8% 이며, 3군(mixed Pg+F.n-biofilm group)에서는 CD4가 49.5%, CD8가 22.2% 이고, 4군(Fn-planktonic group)에서는 CD4가 13.2%, CD8가 11.0% 였다 (Figure 2).
5. *P. gingivalis*-특이성 T-세포 line 배양 상등액 내의 세포카인 정량분석

비교적으로 T-세포를 분리하고 *P. gingivalis*로 자극하여 *P. gingivalis*-특이성 T-세포 line을 수립하였 다. 수립된 *P. gingivalis*-특이성 T-세포 line의 세포카인 농도를 측정한 결과 T-세포 line이 의해 생산된 INF-γ 농도가 1군 (*P. g.-planktonic group*)에서 나머지 3군보다 유의성 있게 높았다 (p<0.01) (Table 2).

Ⅳ. 총괄 및 고안

치주질환은 단일 미생물에 아니라 복합세균으로 구성된 혼합세균성 바이오필름 공동 응집체에 의해 기인한다. 이러한 구성미생물 바이오필름 구성세균 중 *P. gingivalis*가 파괴적인 치주질환을 야기하는 주요한 병원균으로 알려져 왔다. 그러나, 현재까지 *P. gingivalis*에 대한 연구의 대부분은 planktonic식 배양법으로 중식시간 치주균에 대해 행해져 왔으므로, 실제 치주염의 바이오필름 상태의 세균의 행동양태를 적절히 반영하지 못하였다. 이에 본 연구는 바이오필름 상태의 *P. gingivalis*를 배양하여 Bulk/culture면역검사를 실시한 경우 숙주의 세포성 및 세포성 면역 반응이 어떻게 고란되는지를 평가하고자 시도하였다.

P. gingivalis 바이오필름으로 쥐를 면역시킨 후 각기 다른 조직 배양 plate를 이용하여 바이오필름 배양 작용방법의 표준화를 확립한 후, 일정한 방법으로 유도된 *P. gingivalis* 바이오필름으로 쥐를 면역시켰으며, 성공적인 면역을 유도하기 위하여 파하-rise를 반복하는 booster immunization법을 시도하였다.

P. gingivalis 바이오필름의 면역 반응능력을 이해하고 T-세포 line의 항 세균성 방어 및 파괴능력을 이해하기 위해 *P. gingivalis*-특이성 T-세포 line을 확립하고 특성적 표현형을 검사하였으며, 세포카인의 농도를 측정하였다.

치주질환자에 있어 병원균에 대해 상승된 항체는 만족스러운 세균방어 기능을 반영하지 못하고 있다. 그 이유는 명백하지 않지만, 아마도 helper T 세포의 분극화와 면역활성[14]에 대한 면역 반응을 야기하는 치주병원균간의 교차 항원 때문일 것으로 추정된다.[19] *P. gingivalis*-의 단독 바이오필름 또는 다른 세균과의 복합 바이오필름이 어떻게 숙주반응을 교란하여 면역억제로 이끄는지를 살펴보는 것은 아주 중요한 일것이다. 본 연구에서는 *P. gingivalis* 단독(2군) 또는 혼합(*P. gingivalis*+ F. nucleatum) 바이오필름(3군)을 실험군으로, *P. gingivalis*-planktonic group(1군)과 F. nucleatum-planktonic group(4군)을 대조군으로 삼았다. 각 군에 있어서 항체 기능의 지표로서의 면역 현장 결과가 통계적 유의성을 드러내었다. 각 군간의 항 *P. gingivalis* 항체 역가는 유의성을 보이지 않았다. *P. gingivalis*에 대한 항체 결과에서 1군(*P. g.-planktonic group*)이 다른 군(betalin group)에 비해 유의성 있게 높은 항체 결과를 나타내었다. 또한, 올소니트 식작용 기능도 planktonic식 *P. gingivalis*로 면역한 1군에서 바이오필름으로 면역한 실험군들에 비해 유의성 있게 높았다.

그러고 수립된 *P. gingivalis*-특이성 T-세포 line의 배양상태 내의 세포카인 농도를 측정한 결과 INF-γ 농도가 바이오필름군에서 수립된 T-세포 line에서 상당히 낮게 나타났다. 이는 planktonic식 배양 군에 비해 바이오필름 배양 군에서 저하된 숙주 면역기능을 시사하는 것으로서 *P. gingivalis* biofilm에 의한 고란된 숙주면역반응을 의미한다. 다시 말하면, 바이오필름으로 면역한 *P. gingivalis*나 *P. gingivalis*- F. nucleatum 혼합바이오필름으로 면역했을 경우 *P. gingivalis*-특이성 T-세포 line의 INF-γ 농도가 상당히 감소되었다. 또 각 군간에 항 *P. gingivalis* IgG의 수준이 유사함에도 불구하고 *P. gingivalis* 바이오필름으로 면역한 군에서 planktonic식 F. nucleatum 단독 면역군에서 산발된 *P. gingivalis*에 대한 면역반응 결과와 면역반응의 세균배양 결과 및 유소니트 식작용 기능은 유사하였다. *P. gingivalis* 바이오필름으로 면역한 군에서 얻어진 T-세포 line의 INF-γ 생성 감소 현상과 면역활성의 세균배양 결과 및 유소니트 식작용 저하는 이전 연구들의 보고와 같이[11,12] 치주질환에 있어서 Th1 clone의 우세한 방어기능을 확인해 주는 결과라고 할 수 있다. 다군 다나, 혼합성 *Pg+Fh* 바이오필름으로 면역한 군에서
연어진 면역 항체의 작용은 복합세균층에서의 *F. nucleatum*의 면역 변조효과와 관련된 것으로 보여진다(39). 그리고 향후 바이오파스시 대상한 세균 유전자들이23,29) 어떻게 숙주반응을 조절하는지에 대해서도 고찰해야 할 것이다.

최근에 *P. gingivalis*로 단독연여진 동물군과 *F. nucleatum* 면역 후 *P. gingivalis*로 연여진 동물군에서 촘촘한 면역활성의 *P. gingivalis* biofilm 내 첨두액에 대해 연구가 발표된 바55), 이를 토대로 향후 plankton식 바이오필름으로 연여진 쥐의 향혈청과 바이오필름으로 연여진 항혈청의 입지고 인공적으로 조성한 *P. gingivalis* 바이오필름 내 혈청 치료능력을 비교해 보는 것도 매우 흥미로운 일일 것이다.

V. 결론

본 연구는 바이오파스시 형태의 *P. gingivalis*를 유효하여 Balb/c 쥐에 면역시켰을 경우 숙주의 세포성 및 세포성 면역반응이 어떻게 교란되는지를 평가하고자 수행하였다. 바이오필름을 *P. gingivalis* 단독(순수) 또는 *F. nucleatum*과의 복합형으로 형성시켜 면역된 동물군을 각각 2개의 실험군으로, plankton식 바이오필름과 *F. nucleatum*으로 연여진 동물군을 각각 대조군으로 삼아서, 면역 혈청의 양 *P. gingivalis* 항체 역가, 항체 결합성(Avidity), 음소년 식작용 기능을 평가하고, *P. gingivalis*-특이성 T-세포 line의 차별 및 표현형의 특성을 규명하였으며, 세포배양 후 상이류의 T-세포 세포체양액 농도를 측정하였다. 그 결과 다음의 결론을 얻었다.

1. 양 *P. gingivalis* 항체 역가는 각 군간 유의성 있는 차이가 없었다.
2. 1군(Pg-planktonic group)이 다른 바이오필름 군이나 plankton식 바이오필름 *F. nucleatum* 군에 비해 유의성 있게 높은 항체 결합성을 보였다.
3. 각 군으로부터 연어진 면역활성의 *P. gingivalis* 381에 대한 음소년 식작용은 1군 (Pg-planktonic group)에서 유의성 있게 높았으며 바이오필름 군이나 plankton식 *F. nucleatum* 군은 실제 적인 감소를 보였다.
5. *P. gingivalis* biofilm은 차주결합에 있어서 세포성 및 세포성 면역반응을 교란시킨다고 결론 내릴 수 있었다.

VI. 참고 문헌

7. Marsh PD, Bradshaw DJ, Watson DK, Allison C,

-Abstract-

Perturbation of host responses by
Porphyromonas gingivalis biofilm

Woo-Seok Jeon, Sung-Jo Kim, Jeom-II Choi

Department of Periodontology, College of Dentistry, Pusan National University

The present study was performed to evaluate how cellular and humoral immune responses were perturbed by immunization of mixed periodontal bacterial biofilms. Each group of mice was immunized with 1) *Porphyromonas gingivalis* (*P. gingivalis*) grown as a planktonic culture, 2) *Fusobacterium nucleatum* (*F. nucleatum*), 3) *P. gingivalis* grown as a biofilm, or 4) mixed *P. gingivalis* plus *F. nucleatum* grown as a biofilm culture, respectively. Immune mouse sera were collected from each mouse. Spleens were harvested to isolate T cells and consequently stimulated with antigen presenting cells and *P. gingivalis* whole cell antigen to establish *P. gingivalis*-specific T cell lines. There were no significant differences in the mean anti-*P. gingivalis* IgG antibody titers among mouse groups. Immunization of mice with pure *P. gingivalis* biofilm or mixed *P. gingivalis* plus *F. nucleatum* biofilm resulted in significant reduction of antibody avidity and opsonophagocytosis function, INF-γproduction by *P. gingivalis*-specific T cell lines was also substantially reduced in mouse groups immunized with the biofilm. It was concluded that *P. gingivalis* biofilm perturbs the cellular and humoral immune responses in periodontal disease.

Key words: T-cell line, bacterial biofilm, cytokine, cellular immune response